Narrow Beam Silicone LED Collimator Lens - Part No. 570

- Designed for High Power UV LED sources
- High light collection efficiency of >85%
- Precision moulded in optical grade Silicone for outstanding thermal stability, no UV degradation and extreme system durability
- Part of the Polymer Optics “Modular LED Optics”® range
- Polymer Optics “Modular LED Optics”® design, based on a hexagonal format, allows maximum packing density and assembly flexibility

Typical applications include:

- UV curing of adhesives
- UV curing of printing inks and lacquers
- Indoor and outdoor UV decorative lighting
- Water sterilisation
- Microscopy illumination
- Currency inspection
- Forensic analysis
- Non-destructive testing
- Detection of fluorescent minerals

- In order to determine if the particular beam properties and performance of this optic are suitable for your application with your chosen UV LED type, POL suggests that you obtain samples from POL or their distributors for your own product testing, as properties may vary with different LED types.

Performance values given are typical values and will vary dependent on LED type, binning, wavelength and drive profile.

Due to continuous product improvement, POL reserve the right to change specifications without notice.

© Copyright Polymer Optics Limited 2016
Narrow Beam Silicone LED Collimator Lens - Part No. 570

- POL optics are supplied pre-assembled into the appropriate holder to suit your chosen UV LED package and are ordered by part number 570/xxx, where xxx is the required holder part number.

Typical Cartesian/Polar Output Intensity Plot with 1mm die size high Power LED

Mounting Heights in Holder (X):

- 121 - 13.7mm
- 127 - 12.3mm
- 128 - 12.3mm
- 147 - 12.3mm
- 151 - 13.7mm
- 155 - 13.7mm
- 175 - 11.4mm
- 180 - 11.4mm
- 182 - 11.4mm
- 223 - 11.4mm
- 239 - 13.7mm

Performance values given are typical values and will vary dependent on LED type, binning, wavelength and drive profile.

Due to continuous product improvement, POL reserve the right to change specifications without notice.

© Copyright Polymer Optics Limited 2016